Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Metab Disord ; 21(1): 13-32, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35673416

ABSTRACT

Background: Modifying gut dysbiosis has achieved great success in managing type 2 diabetes mellitus (T2DM) and also T2DM affected the gut microbial composition. Objectives: To determine the research trend of scientific publications on the relationship between gut microbiota and T2DM through a bibliometric and descriptive approach. Method: We included originals and reviews related to both topics of gut microbiota and T2DM through searching in Scopus up to 31 December 2019 and then characterized their bibliometric profiles including the number of publications, citations, institutions, journals, countries, and the collaboration network of authors, countries, terms and keywords. Moreover, we performed a descriptive evaluation of the clinical trials based on their intervention type and its influence on gut dysbiosis. Results: We achieved 877 articles (436 originals and 441 reviews) according to our inclusion criteria. The annual publications were constantly increased over time and reached 220 publications in 2019. Out of 436 original articles, 231 animal studies and 174 human studies were found. The majority of human studies were clinical trials (n = 77) investigating the influence of drugs (n = 21), regimens (n = 21), pre/pro/symbiotic (n = 19), surgeries (n = 15), or both drug and regimen (n = 1) on gut dysbiosis. Roux-en-Y gastric bypass and metformin were assessed the most in these trials. Obesity side by side T2DM has been assessed in this area of literature based on term and keyword analyses showing their possible similar pathways mediated by gut microbiota. Conclusion: The exponentially growing documents on gut microbiota and T2DM had been published during the last decade and revealed gut microbiota alteration mediated antidiabetic effect of many interventions. Thus, we suggest other researchers to consider this pathway in efficacy assessment of therapeutic modalities and to find the optimal composition of gut microbiota that guarantees healthy insulin sensitivity. Supplementary Information: The online version contains supplementary material available at 10.1007/s40200-021-00920-1.

2.
Sci Rep ; 12(1): 2453, 2022 02 14.
Article in English | MEDLINE | ID: mdl-35165344

ABSTRACT

Inflammation plays a critical role in the promotion of hepatocyte damage and liver fibrosis. In recent years the protective role of Akkermansia muciniphila, a next-generation beneficial microbe, has been suggested for metabolic and inflammatory disorders. In this study, we aimed to evaluate the effects of live and pasteurized A. muciniphila and its extra cellular vesicles (EVs) on inflammatory markers involved in liver fibrosis in a mouse model of a high-fat diet (HFD)/carbon tetrachloride (CCl4)-induced liver injury. Firstly, the responses of hepatic stellate cells (HSCs) to live and pasteurized A. muciniphila and its EVs were examined in the quiescent and LPS-activated LX-2 cells. Next, the anti-inflammatory effects of different forms of A. muciniphila were examined in the mouse model of HFD/CCl4-induced liver injury. The gene expression of various inflammatory markers was evaluated in liver, colon, and white adipose tissues. The cytokine secretion in the liver and white adipose tissues was also measured by ELISA. The results showed that administration of live and pasteurized A. muciniphila and its EVs leads to amelioration in HSCs activation. Based on data obtained from the histopathological analysis, an improvement in gut health was observed through enhancing the epithelium and mucosal layer thickness and strengthening the intestinal integrity in all treatments. Moreover, live A. muciniphila and its EVs had inhibitory effects on liver inflammation and hepatocytes damage. In addition, the tissue cytokine production and inflammatory gene expression levels revealed that live A. muciniphila and its EVs had more pronounced anti-inflammatory effects on liver and adipose tissues. Furthermore, EVs had better effects on the modulation of gene expression related to TLRs, PPARs, and immune response in the liver. In conclusion, the present results showed that oral administration of A. muciniphila and its derivatives for four weeks could enhance the intestinal integrity and anti-inflammatory responses of the colon, adipose, and liver tissues and subsequently prevent liver injury in HFD/CCL4 mice.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Carbon Tetrachloride/adverse effects , Diet, High-Fat/adverse effects , Liver Cirrhosis/chemically induced , Liver Cirrhosis/prevention & control , Probiotics/administration & dosage , Adipose Tissue/metabolism , Administration, Oral , Akkermansia/cytology , Animals , Cell Line , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Extracellular Vesicles , Gastrointestinal Microbiome , Gene Expression , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/microbiology , Humans , Liver/metabolism , Liver Cirrhosis/metabolism , Male , Mice , Mice, Inbred C57BL
3.
Expert Rev Gastroenterol Hepatol ; 15(11): 1281-1294, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34654347

ABSTRACT

INTRODUCTION: Human gut microbiota plays a crucial role in providing protective responses against pathogens, particularly by regulating immune system homeostasis. There is a reciprocal interaction between the gut and lung microbiota, called the gut-lung axis (GLA). Any alteration in the gut microbiota or their metabolites can cause immune dysregulation, which can impair the antiviral activity of the immune system against respiratory viruses such as severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2. AREAS COVERED: This narrative review mainly outlines emerging data on the mechanisms underlying the interactions between the immune system and intestinal microbial dysbiosis, which is caused by an imbalance in the levels of essential metabolites. The authors will also discuss the role of probiotics in restoring the balance of the gut microbiota and modulation of cytokine storm. EXPERT OPINION: Microbiota-derived signals regulate the immune system and protect different tissues during severe viral respiratory infections. The GLA's equilibration could help manage the mortality and morbidity rates associated with SARS-CoV-2 infection.


Subject(s)
COVID-19/immunology , Dysbiosis/immunology , Gastrointestinal Microbiome/immunology , Immune System/immunology , Pneumonia, Viral/immunology , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL
...